Математический портал Математику.ру

 

Решение задачи по высшей математике №131

Найти уравнение прямой, проходящей через точку пересечения прямых l1 и l2 и отсекающей на оси абсцисс отрезок, равный d.

Уравнение прямой l1

Уравнение прямой l2

d

Координаты точки Р

x

y

3x-2y-7=0

x+3y-6=0

3

2

5

Отсюда находим х = 6 - 3у


x = 3

Значит точка пересечения двух прямых A (3;1)
По условия отрезок равен 3, значит координата точки B (3; 0).
Найдем уравнение прямой, проходящей через точки А и В.


Здесь знаменатель равен нулю. Полагаем числитель левой части равным нулю.
Получаем