О портале "Математика. ру" arrow Без измерений arrow Решение
Математический портал Математику.ру

Дж. Кристал

Математика есть искусство давать то же имя различным вещам... Если выбрать хороший язык, то можно удивиться, узнав, что доказательства, подготовленные для известного предмета, непосредственно применимы ко многим новым предметам без дальнейших изменений - можно даже удержать названия [цит. по: 167, с. 124].

 

Решение

Печать E-mail
12.03.2008 г.

Решение

Нам пригодится здесь то свойство треугольника, что все высоты его пересекаются в одной точке. Соединим А с В и С; получим точки D и Е (рис. 141, направо). Прямые BE и CD, очевидно, - высоты треугольника АВС. Третья высота - иско­мый перпендикуляр к ВС - должна проходить через точку пересечения двух других, т. е. через М. Проведя по линейке прямую через точки А и М, мы выполним требование задачи,

 

Image

 

Рис. 142. Та же задача. Второй случай.

 

не прибегая к услугам циркуля. Если точка расположена так, что искомый перпендикуляр падает на продолжение диа­метра (рис. 142), то задача будет разрешима лишь при усло­вии, что дан не полукруг, а полная окружность. Рис. 142 по­казывает, что решение не отличается от того, с которым мы уже знакомы; только высоты треугольника ABC пересекаются здесь не внутри, а вне его.

 
« Пред.   След. »
Яндекс.Метрика