О портале "Математика. ру" arrow 5 действие arrow Число возможных шахматных партий
Математический портал Математику.ру

 

Так называемые аксиомы математики - это те немногие мыслительные определения, которые необходимы в математике в качестве исходного пункта [2, т. 20, с. 572].

Ф. Энгельс

 

Число возможных шахматных партий

Печать E-mail
04.03.2008 г.

Число возможных шахматных партий

Займемся приблизительным подсчетом числа раз­личных шахматных партий, какие вообще могут быть сыграны на шахматной доске. Точный подсчет в этом случае немыслим, но мы познакомим читателя с попыткой приближенно оценить величину числа возмож­ных шахматных партий. В книге бельгийского математика М. Крайчика «Математика игр и математи­ческие развлечения»  находим такой подсчет:

«При первом ходе белые имеют выбор из 20 ходов (16 ходов восьми пешек, каждая из которых может передвинуться на одно или на два поля, и по два хода каждого коня). На каждый ход белых черные могут ответить одним из тех же 20 ходов. Сочетая каждый ход белых с каждым ходом черных, имеем 20*20 = 400 различных партий после первого хода каждой стороны.

После первого хода число возможных ходов уве­личивается. Если, например, белые сделали первый ход е2-е4, они для второго хода имеют выбор из 29 ходов. В дальнейшем число возможных ходов еще больше. Один только ферзь, стоя, например, на поле d5, имеет выбор из 27 ходов (предполагая, что все поля, куда он может стать, свободны). Однако ради упрощения расчета будем держаться следующих средних чисел:

по 20 возможных ходов для обеих сторон при пер­вых пяти ходах;

по 30 возможных ходов для обеих сторон при по­следующих ходах.

Примем, кроме того, что среднее число ходов нормальной партии равно 40. Тогда для числа возмож­ных партий найдем выражение

(20*20)5*(30*30)35».

Чтобы определить приближенно величину этого вы­ражения, пользуемся следующими  преобразованиями и упрощениями:

(20 • 20)5 • (30 • 30)35=2010 • 3070=210 • З70 • 1080.

Заменяем 210 близким ему числом  1000, т. е. 103. Выражение 370 представляем в виде

370=368*32=10(34)17=10*8017=10*817.1017=251*1018= =2(210)5*1018=2*1015*1018=2*1033.

Следовательно,

(20*20)5*(30* 30)35=103*2* 1033 * 1080=2* 10116.

Число это оставляет далеко позади себя легендар­ное множество пшеничных зерен, испрошенных в награду за изобретение шахматной игры (264-1= =18*1018). Если бы все население земного шара круглые сутки играло в шахматы, делая ежесе­кундно по одному ходу, то для исчерпания всех воз­можных шахматных партий такая непрерывная пого­ловная игра должна была бы длиться не менее 10100 веков!

 
« Пред.   След. »
Яндекс.Метрика