О портале "Математика. ру" arrow Геометрические arrow Решение головоломки 86
Математический портал Математику.ру

Л. де Бройль

Математический язык предоставляет в распоряжение дедукции точный инструмент, в котором она нуждается для совершения, по возможности безошибочного, перехода от посылок к выводам. Исходя в начале рассуждения из абстрактных формул, в которых физические величины представлены символами, ученый, использующий дедуктивное рассуждение, преобразует по правилам логики свои уравнения и приходит к окончательным соотношениям, которые он хочет проверить. Тогда он должен заменить символы цифрами, для того чтобы получить численные результаты, которые можно сравнить с экспериментом; рассуждение уступает место расчету. Такова схема дедуктивного рассуждения в том виде, в каком оно используется во всех науках, достаточно точных, достаточно разработанных для того, чтобы в них можно было применять математический аппарат [31, с. 177].

 

Решение головоломки 86

Печать E-mail
03.03.2008 г.

86. Для многих будет неожиданностью, что при решении  этой  задачи  понадобятся  сведения  из  астрономии: о расстоянии Земли от Солнца и о величине солнечного
диаметра.

Длина полной тени, отбрасываемой в пространстве проволокой, определяется геометрическим построением, показанными на рис. 90. Легко видеть, что тень во столько раз больше поперечника проволоки, во сколько раз расстояние Земли от Солнца (150 000 000 км) больше поперечника Солнца (1 400 000 км). Последнее отношение равно, круглым счетом, 115. Значит, длина полной тени, отбрасываемой в пространстве проволокой,  равна

4 X 115 = 460 мм = 46 см.

Незначительной длиной полной тени объясняется то, что она бывает не видна на земле или на стенах домов; те слабые полоски, которые различаются при этом - не тени, а полутени.

Другой прием решения таких задач был указан при рассмотрении головоломки 8-й.

 
« Пред.   След. »
Яндекс.Метрика